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Abstract

A committee is choosing from two alternatives. If required su-
permajority is not reached, voting is repeated indefinitely, although
there is a cost of delay. Under suitable assumptions the equilibrium
analysis provides a sharp prediction. The result can be interpreted
as a generalization of the seminal median voter theorem known from
the simple majority case. If supermajority is required instead, then
the power to select the outcome moves from the median voter to the
more extreme voters. Normative analysis indicates that the simple
majority is strictly inferior to some supermajority. Even if unanimity
is a bad voting rule, voting rules close to unanimity may be effi cient.
The more likely it is to have a very many almost indifferent voters
and some very opinionated ones, the more stringent supermajority is
required for effi ciency.
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1 Introduction

Consider a decision-making conclave —a committee locked in a room choosing
from two alternatives, either of which may replace the status quo, through a
supermajority of, say, 2/3. If voters do not reach a decision in the first round
of voting, then they go to the next round, and so on, until the suffi cient
majority is reached. However, since they are locked in a room, delay or
deadlock is increasingly costly to every player. How does the outcome of this
process change if the required supermajority is adjusted to, say, 3/4? Which
rule offers a better chance of a correct choice?
Apart from providing an equilibrium prediction in such mechanisms, the

main contribution of this paper is to identify reasons why both simple ma-
jority and unanimity may be subeffi cient. In the simple majority case, the
median voter is pivotal and —as it represents some "typicality" of prefer-
ences —it is often understood that her choice would implement an effi cient
alternative. A formal version of this argument was made by Rae (1969)
under the assumption that voters’preferences have the same intensity. In
contrast to that, this study allows preferences to have varying intensities. In
equilibrium, the greater supermajority is required, the more extreme voters
become pivotal. In other words, the outcome depends on a combination of
these more extreme preferences, which is a measure of preference typicality
different than the median. The main result is this: the combination of this
measure correlates better with the mean preference, than the median prefer-
ence does. Since the mean preference represents effi ciency, one is interested
in maximizing this correlation.
It has also been argued that one of the main reasons why unanimous con-

sent is not a good voting method is because it may lead to delay or deadlock,
for instance, through obstinacy.1 This study shows that unanimity may be a
bad voting rule even if a decision is reached without any delay. The reason
is a different incarnation of the same fact as above: the combination of the
most extreme preferences correlates very poorly with the average preference.
These results, along with the main assumptions of the model, will be

discussed further after a few examples of this voting institution.
Examples. Some of the most important collective decisions emerge

through such a process, either de jure or de facto.
Often, selecting a candidate by a committee resembles a conclave. It can

1Black (1963), p. 147, Buchanan and Tullock (1962), ch. 8., Barry (1965) p. 242-9.
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be argued that choosing the President of the European Council, selection of
the CEO of a corporation, agreeing on job candidates in hiring committees,
all require repeated attempts to form a suffi cient consensus. Vacancy or in-
terregnum is often the worst outcome, particularly if the committee members
are not allowed to leave the room for as long as the vacancy is not filled, and
the only remaining question is which candidate should be selected.
Papal conclave —election of the Pope, the leader of the Roman Catholic

Church —seems to be a fairly close example of this type of voting. A can-
didate requires 2/3 majority in the College of Cardinals, and the voting is
repeated indefinitely until such support is reached. The Cardinals are locked
"with the key" (cum clave) for the duration of the process; they receive
food and can sleep, but otherwise they are forced to a rather monotonous
lifestyle, which, long-term, must be increasingly unbearable. Despite the
secrecy involved in the process, the voting rules are well-known and their
evolution quite well-documented (Baumgartner (2003)). The requirement of
2/3 majority was written down as a rule by the Third Lateran Council of
1179. Since then, the only serious challenge came in 1996, when John Paul’s
new election constitution allowed the electors to switch to simple majority
after 30-33 unsuccessful ballots (Baumgartner (2003)), which effectively sanc-
tioned the simple majority as the rule. The John Paul’s successor, Benedict
XVI, changed the rules back to 2/3 majority in 2007. This study will pro-
vide an argument why a supermajority is likely to be superior to the simple
majority.
Another example of this voting method is trial by jury. The jury has to

arrive to a decision to acquit or to convict, and since unanimity or almost
unanimity is required in most jurisdictions, this is obtained through repeated
voting, intertwined with often lengthy deliberations among the jury members.
Like in a papal conclave, the jury members are locked for the duration of the
process.
The analysis below can shed some light on some types of negotiations as

well. In open-ended negotiations, the involved parties have enough time to
propose new alternatives and bargain, while the status quo is not necessarily
the worst outcome. The model in this paper does not fit this scenario. How-
ever, when negotiations requiring a supermajority are summoned to address
an emergency or a crisis, then it is likely that they instantaneously reach a
stage in which a binary agenda is established, everyone agrees that waiting is
costly, and status quo is the least preferable outcome. Many international or-
ganizations use various supermajority rules (e.g. the Treaty of Lisbon in the
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European Union has replaced unanimity by less stringent qualified majority
rules), and therefore this situation may occur from time to time.
Summary of the results. There are positive and normative questions

asked in this paper.
Positive analysis, contained in Section 4, shows that preference intensities

of the voters are the key determinants of the voting outcome. To be more
precise, suppose that two alternatives are A and B, suppose that n is the size
of the committee and suppose that supermajority n+1−m is required, where
the key parameter m is the minimal blocking minority. That is, m voters
voting in unison are able to prevent an alternative from being selected; fewer
than m is not enough. Voters have different preference intensities, so they
can be sorted from the one who prefers A the most, to the one who prefers
B the most. Take two pivotal voters, the mth voter from the A side and the
mth voter from the B side and check which one prefers her alternative more
—that alternative will be selected in equilibrium without any delay.
This result can be expressed in terms of one variable. If the mth voter

from the A side prefers A more than the mth voter from the B side prefers B
(thus leading to the selection of A), then the average of the values of these two
pivotal voters will "prefer" A. This average is called the mth quasi-midrange
because it is the midrange point of a sample whose m − 1 most extreme
elements from each side were truncated. The equilibrium characterization
could be called the quasi-midrange voter theorem, the special case of which
is the median voter theorem.
Section 5 turns to a normative analysis of what the best minimal blocking

minority m is, if the voting system has to be decided before the voters learn
their preferences. This is investigated for the case of frequent voting and
asymptotically large committees and for symmetric parent distributions of
voters’preferences. Unanimity is as bad as flipping a coin, simple majority
is better, but there is an intermediate supermajority that is even better. The
key statistical result behind this last claim is that a sample mean does not
correlate with a sample median as well as with some other intermediate quasi-
midranges. Since the mean represents constrained effi ciency,2 and the quasi-
midrange represents equilibrium of an intermediate supermajority system,
relying on the median is subeffi cient, as compared to the optimal intermediate
quasi-midrange. As far as the unanimity system is concerned, the midrange

2The term "constrained" reflects the restriction that only supermajority systems are
considered.
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(without "quasi") correlates with the mean particularly poorly, and hence
relying on it is particularly hopeless.
What supermajority is constrained effi cient depends on a parent distri-

bution of voters preferences, and, specifically, on the relationship between
tail/extreme preferences versus central/indifferent preferences. Simple ma-
jority is the best system if preference intensities are similar enough. Even if
unanimity is the worst voting method, systems close to unanimity may be
optimal if (i) there is a high overall probability that voters are indifferent, but
(ii) very extreme preferences can occur. This may sound somewhat paradox-
ical, but the intuition is straightforward. If such is the parent distribution,
then most of the voters are indifferent. Preferences of a few very strong-
minded voters determine what the effi cient decision is, and so these voters
should determine the outcome. Large supermajority requirement gives them
that power.
As any theoretical model, this one can also be criticized on the basis of

some modelling choices and lack of realism. Section 6 attempts to address
some of these criticisms. Among other issues, it compares the asymptotic
outcomes with simulated outcomes for relatively small committees. Examples
considered suggest that the results obtained for the asymptotic cases are
remarkably close to the ones obtained for committees consisting of one or
two dozens members. Clearly, it is nonsensical to organize a conclave with
millions of voters, but the asymptotic analysis presented in this paper offers
a simple and convenient benchmark.
Summary of the main assumptions. Firstly, players’preferences are

commonly known. Thus, this paper does not study information aggregation.
Largely thanks to this assumption, there is no delay in equilibrium. This
assumption is less restrictive that it may seem at first. Often, an essential
element of repeated voting procedures is a possibility to exchange opinions
and to present evidence. The organization of jury voting is intentionally
conducive to deliberations. In papal conclave, voting rounds alternate with
sermons by senior Cardinals and periods of reflection and dialogue. Even if
voters enter the process with some private information, they will reveal it
in equilibrium, provided that there exists a technology to present credible
evidence and that there is ample time to do that (see also comments on
Ponsati and Sakovics (1996) below).
Secondly, it is assumed that as the game progresses, the cost of waiting

becomes large enough to dominate static preferences for one of the alterna-
tives. Specifically, after a long enough wait, a voter will prefer to sacrifice the
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prospect of getting her favorite alternative next round by accepting the less
preferred alternative this round. This assumption seems to be justified, given
the format of the voting process. One should expect that, as time passes, vot-
ers locked in a room would become increasingly desperate to reach a decision.
For example, members of a recruitment committee may argue vigorously for
a few hours, but will become more cooperative when lunch is delayed. Even
if Cardinals in a papal conclave, or jury members in jury trials, etc., receive
food and time to sleep, after a few days or weeks they too may lose their
patience to continue the process. In crisis negotiations, the cost of waiting is
increasing fast, almost by definition.

2 Existing literature

The merits of unanimity versus simple majority rule in collective decision
making is a classical topic. Following Buchanan’s and Tullock’s (1962)
two-stage approach to constitution design, Rae (1969) provides a norma-
tive analysis of voting systems. He argues that simple majority is the best
voting rule because it selects an alternative that a representative voter is
most likely to prefer after she learns her preferences. This result heavily
relies on the assumption that voters have preferences of equal intensity (see
also May (1952)). The present study can be seen as an attempt to provide a
parallel result when voters have preferences of varying intensity.
Studies of supermajority (such as Black (1948), Aghion at al. (2004),

Holden (2009)), often envision the following ’static’scenario: there is some
status-quo, which can be changed by some large enough supermajority.3 In
this class of models, Caplin and Nalebuff (1991) show that the proposal most
preferred by the mean voter is unbeatable under approximately 63%-majority
rule. The model below studies supermajority rules in a very different context:
every voter agrees that status quo is inferior and voting is repeated until this
status quo is replaced by one of the alternatives.
In the literature on dynamic multiplayer decision-making, the closest pa-

per to this study is Ponsati and Sakovics (1996). They study a similar eco-
nomic environment with many players, two alternatives and costly waiting,

3Messner and Polborn (2004) consider an overlapping-generations model in which a
supermajority rule needed for future reforms is selected at the constitutional design phase.
Older generations, who would pay immediate costs but would not reap future benefits from
reforms, are in favour of selecting a supermajority rule that preserves status quo.
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but they focus exclusively on equilibrium characterization. They assume
a "simple timing game" in which a player can continue supporting her fa-
vorite alternative or yield once and for all. The second key assumption in
their model is that a player cannot observe how many players supporting
the other alternative have yielded. In contrast to this, in the model below
voters can switch their votes as they please and they observe the full his-
tory of voting. Since Ponsati and Sakovics (1996) assume that voters have
private information about the intensity of own preferences, their equilibrium
has some strategic delay (more on delay in Section 7), but the alternative
selected in symmetric equilibrium of their model is characterized by a similar
quasi-midrange condition as here. Whichever set of assumptions is more re-
alistic in a particular context —the ones of this study, or the ones in Ponsati
and Sakovics (1996) —this feature of the equilibrium outcome appears to be
robust, and, consequently, the effi ciency analysis contained in Section 5 looks
compelling.
Other models that study collective bargaining should also be mentioned.

Baron and Ferejohn (1989) presents a dynamic model of collective bargain-
ing in which the size of supermajority is an important object of analysis.
A randomly selected agent makes a proposal, which is then voted by the
committee; if rejected, the game moves to the next round. This model and
related literature treats the agenda as endogenous. The assumption in the
model below is different —once voting starts, the alternatives considered by
the voters are fixed. This assumption seems more realistic in some contexts,
such as choosing a leader form a given set of candidates, if side transfers and
favours among the participants are prohibited.
Compte and Jehiel (2010) study a model somewhat related to Baron and

Ferejohn (1989) in which, however, the voters do not have a control over
the current agenda (and thus in this respect their work is similar to the
model presented below). Voters can reject the current proposal expecting
that a new proposal —which arrives from outside, like in the classical search
literature —will be superior.
Piketty (2000) investigates repeated voting on one issue with the same

set of voters. However, he is concerned with a two-round election with three
candidates, in which the second round is reached by two best candidates
of the first round, only if no candidate obtains 50% of the vote in the first
round.4

4There is also a literature on sequential voting, in which one set of voters votes in one
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3 Model of repeated voting

Physical environment. There is a committee consisting of n ≥ 2 agents
or voters. There is a set of two alternatives, A and B. One of them may be
selected at a certain time. The outcome is a pair consisting of the selected
alternative and the time when this decision was reached.
Voting. Decision is made via supermajority voting. In a given voting

round each voter casts her vote for A or for B. The supermajority required
to select an alternative is n + 1 − m. The key number m = 1, 2, ..., m̄ is
interpreted as a minimal blocking minority, where m̄ = n/2, if n is even, and
m̄ = (n+ 1) /2, if n is odd. In particular, one extreme system is unanimity,
in which one voter is able to block a decision, m = 1; the other polar case is
simple majority, in which at least a half of all voters is required to block a
decision, m = m̄.
If no alternative gathers enough support, the voting goes to the next

round. There is an infinite number of voting rounds. The time interval
between two consecutive voting rounds is ∆, so that voting rounds occur in
calendar times t ∈ {0,∆, 2∆, ...}.
In each round, voters announce their votes sequentially one-by-one, ac-

cording to an order determined randomly and announced at the beginning
of the round.5

Preferences. The payoff of each voter depends on the outcome. Voters
are heterogeneous; commonly known parameter xi summarizes preferences
of voter i. It is interpreted in the following way: if B is selected immediately,
then voter i gets xi more utility than if A was selected immediately. As
a result, positive xi indicates that i prefers alternative B; negative xi indi-
cates that i prefers alternative A. If xi is zero, voter i is indifferent between
alternatives. Let x = (x1, ..., xn) .
To describe how delay affects the payoff, assume that W (|xi| , t) is the

payoff of a voter characterized by xi, if her favorite alternative (B if xi > 0

period and then another set of voters votes later on the same or related issue (Battaglini
et al. (2007) and references therein).

5This assumption circumvents a coordination problem inherent in voting. If voting
was simultaneous in each round, then both alternatives could be obtained as equilibrium
outcomes. This is also true in static games, in which, however, one may apply an argument
of weak dominance to eliminate unreasonable equilibria. This refinement is not useful in
repeated voting, but still, an equilibrium which relies on pure miscoordination is deemed
unreasonable —and it disappears if there is some very mild inertia in voting e.g. if actions
are taken sequentially within each round.
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and A if xi < 0) is implemented at time t, and L (|xi| , t) is the payoff of
this voter if the other alternative is selected at time t. Both W and L are
continuous functions of two non-negative real numbers. Clearly, for t = 0 we
have

|xi| = W (|xi| , 0)− L (|xi| , 0)

The following assumptions should be uncontroversial. Firstly, assume
that for every type xi, functions W (|xi| , ·) and L (|xi| , ·) are strictly de-
creasing. This captures the fact that status quo is the least preferred alter-
native for all agents. Secondly, for every type xi and time t, let W (|xi| , t) ≥
L (|xi| , t).
Next assumption captures the fact the committee is locked in a room and,

therefore, player’s cost of waiting is increasing to such an extent that there
exists a time in the future, such that when the game reaches that time, the
player prefers to obtain the less preferred alternative than to wait one more
round and get the more preferred alternative. Let this time be denoted by
τ (|xi| ,∆). It is formally defined as:

W (|xi| , t+ ∆) = L (|xi| , t) if t = τ (|xi| ,∆)

and W (|xi| , t+ ∆) > L (|xi| , t) (respectively, <) if t < τ (|xi| ,∆) , (respec-
tively, if >). Call τ (|xi| ,∆) the indifference time of voter i.
As an example, considerW (|xi| , t) = |xi|− t2 and L (|xi| , t) = −t2. Then

τ (|xi| ,∆) =
|xi|
2∆
− ∆

2

if the right-hand side is non-negative, zero otherwise.
The last assumption of this section puts a very mild restriction on what

happens when voting becomes more frequent.6 It is immediate that the more
frequent voting, the greater τ (|xi| ,∆) gets. The assumption is that, for any
two types x and x′, the difference τ (|x| ,∆)− τ (|x′| ,∆) 6= 0 does not change
its sign and is bounded away from zero, as voting becomes more frequent.
Clearly, this assumption holds in the example.

6Section 5, with normative results, has an additional assumption that τ is increasing
in its first argument.
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4 Equilibrium

This section shows that the model described above has a subgame perfect
Nash equilibrium7 that leads to a unique voting outcome. It is completely
characterized by the indifference times of two pivotal voters. To explain who
pivotal voters are, it is useful first to define τ i as

τ i =

{
τ (|xi| ,∆) if xi > 0
−τ (|xi| ,∆) if xi ≤ 0

That is, |τ i| is an indifference time of voter i, where negative sign of τ i
indicates that i prefers A, and positive sign indicates that i prefers B. Let
τ = (τ 1, ..., τn). Sort the voters from the lowest to the highest according to
this parameter, (τ 1:n, ..., τn:n), where τ k:n is the kth lowest element in τ . For
a given supermajority m, the pivotal voters are those who are characterized
by indifference times τm:n and τn+1−m:n. That is, these are the mth closest
voter to alternative A and the mth closest voter to alternative B, according
to their indifference times.
Let h ∈ {A,B} be the alternative preferred by the pivotal voter with

the higher indifference time and let l ∈ {A,B} be the other alternative. For
example, (h, l) = (A,B) if |τm:n| > |τn+1−m:n| .
The main result of this section is this:

Proposition 1 Let m < (n+ 1) /2. Fix a preference profile (x1, ..., xn) , such
that |τm:n| 6= |τn+1−m:n|. Then there exists ∆̄ > 0 such that for all ∆ < ∆̄,
an equilibrium exists and in any equilibrium the alternative preferred by the
pivotal voter with the greater indifference time, h, is selected in the first
round.

The proofs are in the Appendix.
To explain this proposition, let us define a few objects. Let N k be the set

of voters who prefer alternative k. Let TA = |τm:n| and TB = |τn+1−m:n| be
the indifference times of the pivotal voters. Obviously, T h = max

{
TA, TB

}
and T h > T l. Having T h, we can define sets

N k
+ =

{
i ∈ N k : τ (|xi| ,∆) ≥ T h

}
N− =

{
i ∈ N : τ (|xi| ,∆) < T h

}
7A strategy is a mapping from the realization of preferences, x, and a history of voting

in the previous and the current round, into action "vote for A" or "vote for B".
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There are two important observations about set N k
+. Firstly, every voter in

set N k
+ still strictly prefers alternative k if voting is in round t ∈

(
T l, T h

)
.

Secondly, set N h
+ has at least m elements, and N l

+ has at most only m − 1
elements. Note also that as voting becomes more frequent, the order of voters
according to their indifference times does not change, nor does the identity
of pivotal voters, nor do the sets NA

+ , NB
+ and N−.

The proof is essentially by backward induction. Suppose that the game
is still unresolved in a voting round t ∈

(
T l, T h

)
. Voters in set N h

+ are
able to block alternative l if they voted in unison, because their number is
at least equal to the minimal blocking minority. Moreover, they want to
block alternative l, if h can be selected in round t or soon after, because
they still strictly prefer it. This logic does not apply to voters in set N l

+.
There are fewer of them than the minimal blocking minority, so they are
not able to block alternative h in that round. Remaining voters, who are in
set N−, do not care which alternative is selected; they want the voting to
finish as quickly as possible. So, if voters in sets N h

+ and N− can coordinate,
they would coordinate on voting for h, as together they form a suffi cient
supermajority to stop the game in round t and select h. The fact that
voting is sequential within each round, rounds are frequent, and the order of
moves is established randomly enables such a coordination. Then, backward
induction, round-by-round, does the rest.

5 Effi cient voting system

This is the main part of this paper, in which we ask what kind of voting
system should be chosen. In particular, what m is the best? It is clear that
normative analysis can be illuminating only from the ex ante perspective,
when the preference profile of the committee members is not yet known.8

Assume thus that there are two stages in which citizen-voters are active. The
first stage can be called a constitution design stage, and the second stage is
the actual voting process culminating with the collective decision. In the
first stage, voters, still uninformed about their future preference type, decide
about m. Once the voting system is determined, nature selects a preference
parameter for each voter and announces it publicly. In the second stage,
voters, now heterogeneous, play a repeated voting game as described in the
previous section.

8See Buchanan and Tullock (1962), page 78.
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Imagine a representative voter who forms expectation about future pref-
erences. These preference parameters will be independently drawn from a
known, continuous distribution function F (·), with density f (·), mean µ
and variance σ2 <∞.
The assumption about independence of preferences rules out some inter-

esting scenarios. For example, suppose that the vote is about what voter
1 should have for dinner, an Apple or a Banana. Since every other voter is
indifferent about the dinner of voter 1, preferences are not independent. This
situation is not covered by the investigation of this section, even if Proposi-
tion 1 suggest the answer: the only system that gives voter 1 his preferred
dinner with certainty is unanimity.
If F is not continuous then two voters may have the same preference

parameters or the same indifference times, so that one could not use Propo-
sition 1.
Distributions satisfying a number of assumptions will be of interest:

1. Symmetry of the distribution, that is, f (µ− x) = f (µ+ x) for all x.

2. Zero mean, that is, µ = 0,

3. Existence of almost average voters, that is, density f is positive and
continuous at µ,

4. Bounded support, that is, x̃ = sup {x : F (x) < 1} <∞

Let X1, ..., Xn be the i.i.d. random variables from this F . The realization
is interpreted as the preference vector x defined above. Let also X1:n, ..., Xn:n

be this sample sorted from the lowest to the highest; in other words, Xm:n is
the mth order statistic associated with the sample X1, ..., Xn.
This paper adopts an equally weighted utilitarian welfare function. The

realization of the sample mean X̄n = (1/n)
∑n

i=1 Xi is the average welfare, if
B is implemented without any delay. The average welfare is −X̄n if A is im-
plemented without any delay. Clearly, the effi cient outcome will not involve
any delay, so the first-best mechanism implements alternative B immediately
if the realization of X̄n is positive and implements A immediately otherwise.
Thus, the ex post first-best average welfare is

∣∣X̄n

∣∣ , and its ex ante expected
value is

Pr
{
X̄n > 0

}
E
(
X̄n|X̄n > 0

)
+ Pr

{
X̄n < 0

}
E
(
−X̄n|X̄n < 0

)
12



Note that this average welfare level is not achievable if only mechanisms
studied in this paper are available, because the equilibrium outcome of these
mechanisms depends only on preferences of two pivotal voters, instead of the
preferences of the entire committee.
To see what is possible, consider equilibria characterized by Proposition

1 and focus on the limit case of infinitely frequent voting ∆→ 0.
Assume that τ (·,∆) is strictly increasing; that is, the stronger opin-

ion a voter has, the longer she is willing to wait. It is a form of sym-
metric time preference. In equilibrium, alternative B is selected as long as
|τm:n| < |τn+1−m:n| . This condition holds if and only if |xm:n| < |xn+1−m:n| ,
which itself is equivalent to xm:n + xn+1−m:n > 0. From the ex ante stage,
one is interested in the realization of the associated random variable Zm

n =
(1/2) (Xm:n +Xn+1−m:n). It is called the sample mth quasi-midrange of the
sample X1, ..., Xn, because it is a sample midrange after one has truncated
m − 1 most extreme sample points from each side. It could be viewed as
a sample measure of centrality, with sample midrange and sample median
being two polar cases.
The expected average welfare of a representative agent in equilibrium is

V m
n = Pr {Zm

n > 0}E
(
X̄n|Zm

n > 0
)

+ Pr {Zm
n < 0}E

(
−X̄n|Zm

n < 0
)
(1)

The interest is in the second-best mechanisms, obtained by finding m that
maximizes V m

n . Such m will be referred to as constrained effi cient superma-
jority.9

In order to study effi ciency properties of various supermajority rules, one
has to start by examining the joint probability distribution of

(
X̄n, Z

m
n

)
. It is

easy to calculate if n = 2, (because then X̄2 = Z2
2) although that exercise is

useless if one wants to study supermajority rules. Calculating this probability
distribution explicitly becomes diffi cult for n = 3; for all practical reasons it
is impossible if n is greater. A systematic study of V m

n as a function of m
looks like a hopeless task.
The rest of this section focuses on the case n→∞. Fortunately, it turns

out that the resulting asymptotic joint distribution has a very tractable form
and allows a far-reaching explicit analysis of constrained effi cient mecha-
nisms. Hence, all normative statements in this section will be double limit
results. Firstly, the time interval between voting rounds goes to zero, and
then the size of the committee goes to infinity.

9The second effi ciency criterion that one may use is the probability of the correct choice,
Pmn = Pr

{
X̄n × Zmn > 0

}
. Rae (1969) used this measure.
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5.1 Asymptotic joint probability distribution

Switch from an absolute measure of supermajority, m, to a relative measure,
p ∈ (0, 1/2] , a fraction of all the voters that may block an alternative. They
are related through m = dnpe . In other words, as n goes to infinity, the su-
permajority requirement m also goes to infinity, but p = m/n stays constant
(subject to an integer constraint).
Before the key asymptotic result linking the sample mean and the sample

quasi-midrange is presented, one has to define a few objects. Let 0 < p <
1 and let xp denote pth population10 quantile of F , that is, F (xp) = p.
Apart from the sample mean X̄n, define also Y p

n = Xdnpe:n to be the sample
pth quantile. Moreover, for 0 < p < q < 1 define Ẑpq

n = (1/2) (Y p
n + Y q

n )
to be the sample (p, q)−quasi-midrange. Let µpq = (1/2) (xp + xq) be the
corresponding population quasi-midrange.
Given distribution F, define the following variance-covariance terms,

σpx = p (1− p) (E (X|X > xp)− E (X|X < xp)) /f (xp)

(σp)
2 = p (1− p) /f (xp)

2

For 0 < p < q < 1 define also

σpq = p (1− q) / (f (xp) f (xq))

σxz = (1/2) (σpx + σqx)

(σz)
2 = (1/4)

(
σ2
p + 2σpq + σ2

q

)
The following result reveals the asymptotic normality of the sample mean

and a sample quasi-midrange, as the sample size goes to infinity.

Lemma 1 Let 0 < p < q < 1. If density f is continuous and positive at xp
and xq, then

√
n

([
X̄n

Ẑpq
n

]
−
[

µ
µpq

])
d→ N

([
0
0

]
,

[
σ2 σxz
σxz (σz)

2

])
This is a general result, but in the context of this model, one is interested

in the case when p = 1 − q ≤ 1/2. This is because both alternatives are

10The term "population" refers to the corresponding parameter of the actual distribution
function. The term "sample" refers to the realization of a certain random variable and
represents the population of voters.
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treated symmetrically by the voting system, that is, each must gather the
same support to win. Note that under this assumption, Ẑ1−q,q

n = Ẑp,1−p
n = Zm

n

as long as m = dnpe.11 Abusing notation slightly, write Zq
n for Z

m
n , write V

q
n

for V m
n .
The asymptotic correlation between the sample mean and the sample

quasi-midrange will be a key object of analysis. It is defined by

ρ (xq) =
σxz
σσz

, (2)

where its dependence on the quantile determined by the voting system q is
emphasized by the notation. Let R (x) = E (X − x|X > x) be the mean
residual life associated with distribution F (this function is often used in
reliability studies).

Lemma 2 Suppose that F satisfies assumption 1 (symmetry), and the den-
sity f is continuous and positive at xq. Then the asymptotic correlation
coeffi cient of the mean and the qth quasi-midrange is

ρ (xq) =

√
2

σ

√
1− F (xq) (R (xq) + xq − µ) (3)

for xq ≥ µ. Its derivative is

ρ′ (xq) =
1

σ
√

2

f (xq)√
1− F (xq)

(R (xq)− xq + µ) . (4)

5.2 Welfare criterion

Having Lemma 1, the asymptotic constrained effi ciency criterion is easy to
derive.

Lemma 3 Suppose that F satisfies assumptions 1 (symmetry) and 2 (zero
mean), and the density f is continuous and positive at xq. Then the asymp-
totic welfare is limn→∞

√
nV q

n = ρ (xq)σ
√

2/π.

11Strictly speaking, this is correct if np is not an integer.
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Thus, the task of maximizing welfare is equivalent to the task of maxi-
mizing ρ (xq).12 ,13

5.3 Effi cient supermajority rule

This subsection uses the above results to characterize the constrained effi cient
supermajority rule.
First, investigate a system close to simple majority. To do that, check the

sign of ρ′ (·) , when xq approaches the median µ = 0 from the right. Lemma
2 shows that the derivative of the correlation becomes f (µ)R (µ) /σ. This
term remains strictly positive, because voters with non-average preferences
may exist, R (µ) > 0, and because voters with average preferences may ex-
ist, f (µ) > 0. Asymptotic correlation is strictly increasing at µ, so is the
asymptotic average welfare, by Lemma 3. This proves

Proposition 2 Suppose that F satisfies assumptions 1 (symmetry), 2 (zero
mean) and 3 (average voters). Then the asymptotic correlation is a strictly
increasing function at µ, and simple majority is not asymptotically con-
strained effi cient.

Next, focus on the other polar case —supermajority rules close to unanim-
ity. Straightforward examination of equation (3) shows that limq→1 ρ (xq) is
zero, if the distribution of preferences has a bounded support. Then Lemma
3 implies the following result,

Proposition 3 Suppose that F satisfies assumptions 1 (symmetry), 2 (zero
mean) and 4 (bounded support). Then limq→1 limn→∞

√
nV q

n = 0.

Asymptotic correlation is a continuous function of supermajority q, start-
ing at a certain strictly positive value for q = 1/2, then increasing as super-
majority requirement is increased (by Proposition 2), but eventually turning

12It appears that the value of welfare converges to zero as n→∞, and so the result of
voting in large committees is irrelevant to an individual. This is an incorrect interpretation,
see discussion in Section 6.1.
13The asymptotic probability of the correct choice is

lim
n→∞

P qn = 1/2 + (1/π) arcsin (ρ (xq))

which has the same maximizer as limn→∞
√
nV qn .
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down so dramatically that it reaches zero (by Proposition 3). This proves
that a constrained effi cient supermajority rule must be strictly in the inte-
rior. The first order necessary condition is ρ′ (xq) = 0, which translates to
R (xq) = xq. We obtain

Proposition 4 Suppose that F satisfies assumptions 1 (symmetry), 2 (zero
mean) and 4 (bounded support). Suppose that density f is positive and con-
tinuous on support (−x̃, x̃) . Then constrained effi cient q is in the interior,
1/2 < q < 1, and satisfies R (xq) = xq.

Writing it concisely: under all assumptions of the model above, the rank-
ing of the supermajority systems according to their welfare performance is:

Unanimity ≺ Simple majority ≺ Optimal interior supermajority

As the last remark in this subsection, we investigate unanimity using
a different type of asymptotic analysis. Suppose that m is constant when
n→∞. In this case, p = m/n converges to zero, representing the case of an
extreme supermajority requirement and, in particular, the case of unanimity.
There is a known result, which states that three random variables Xm:n,
Xn+1−m:n and

√
n
(
X̄n − µ

)
/σ are asymptotically independent, as n→∞ for

a given m (see for example David (1981), p. 269-270). Therefore, any quasi-
midrange Zm

n and standardized mean
√
n
(
X̄n − µ

)
/σ are asymptotically

independent for a given m. Equation (1) together with this observation
implies the following statement:

Proposition 5 Suppose that F satisfies assumption 2 (zero mean). Suppose
that m is constant. Then limn→∞

√
nV m

n = 0.

This statement has a similar conclusion to Proposition 3, although under
different assumptions.

5.4 Examples

Further intuition will be built by the following examples.
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5.4.1 Bounded support: Piecewise linear distribution

Consider a piecewise linear distribution function with the support [−1, 1],
symmetric around the mean zero. It is characterized by parameters α and
β, where β ∈ [0, 1] is the cutoff level on the support, and α ∈ (0, 1) is the
probability that |x| ∈ (β, 1). That is, the functions F (x) and R (x) for
positive arguments are:

Interval F (x) R (x)

0 ≤ x ≤ β 1
2

+ (1−α)
2β

x α(1+β)β+(1−α)(β−x)(β+x)
2(λβ+(1−α)(β−x))

− x
β < x ≤ 1 1− α

2(1−β)
(1− x) 1+x

2
− x

First, consider a uniform distribution on [−1, 1] , which requires β = 1−α.
Then R (x) = 1+x

2
− x. The optimality condition, R (x) = x, leads to the

unique solution at x = 1/3. The supermajority system that supports this
quantile is q = 2/3.
Now, let us ask the question the other way round: what is the distribution,

if an arbitrary q ∈ (1/2, 1) is to be constrained effi cient? The following
statement provides the answer.

Proposition 6 Select any q ∈ (1/2, 1) . Let a piecewise linear distribution
have parameters

α = 3
1− q
2− q and β =

1− q
2− q

Then, q is the constrained effi cient supermajority rule.

Note that a very extreme supermajority requirement may be optimal. As
q → 1, both parameters converge to zero. The intuition is clear: if almost
everyone in a committee is almost indifferent between the alternatives, then
very few opinionated voters should be allowed to decide about the outcome.
That means a very high supermajority requirement.
On the other hand, simple majority may also be optimal. We have

limq→1/2 β = 1/3 and limq→1/2 α = 1. That is, a simple majority is opti-
mal only if all voters prefer their favorite alternatives with similar strengths,
and, in particular, only if no one is close to being indifferent.
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5.4.2 Unbounded support: Pareto distribution

Consider a family of two-sided generalized Pareto distributions, symmetric
around zero. If x is positive, the c.d.f. function is

F (x) = 1− 1

2

(
b

ax+ b

)1+1/a

where the parameters satisfy b > 0 and a > 0. The variance exists if and
only if a < 1. The case of a = 0 is described by the exponential distribution
with parameter b:

F (x) = 1− 1

2
exp

(
−x
b

)
Pareto distribution is easy to work with because it generates a linear

mean residual life function, R (x) = ax + b. This paper focuses only on
parent distributions for which the first two moments exist, so that our earlier
asymptotic results can be derived. As a consequence, we reach conclusion
that for all parameters in the interesting range, b > 0 and a ∈ (0, 1) , there
is an interior solution to the condition R (xq) = xq. The optimal quantile is
xq = b/ (1− a) and the constrained effi cient supermajority is

q = 1− 1

2
(1− a)1+1/a

As a goes to zero, the distribution becomes exponential, and the optimal
supermajority becomes 1− (1/2) exp (−1) , which is roughly equal to 0.816.
Alternatively, as a goes to one, the tails become thicker and we obtain that
large supermajority are optimal, lima→1 q = 1.
Unresolved question remains whether this can be generalized to all un-

bounded distributions. That is, is it true that for any distribution having a
finite second moment, condition R (x) < x holds for all x suffi ciently high? If
yes, then there is an interior solution. The following results gives an answer
to a related question.

Proposition 7 Suppose x̃ = ∞. Then there exists x ∈ (0,∞) such that
R (x) = x.

The second unresolved question is what happens if σ2 = ∞? Neither
conclusion of Lemma 1, nor of the result leading to Proposition 5 is valid in
this case. One can conjecture that if tails of the distribution are thick enough,
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preferences of the two most extreme voters would become so important that
in the effi ciency calculation they would dominate everyone in between. If
that is true, then unanimity would be the best system.

6 Criticisms

This section will address some of the criticisms that can be raised against
the asymptotic effi ciency analysis above.

6.1 Is the result of voting important to an individual?

The fact that
√
nV q

n converges to a constant means that V
q
n converges to

zero, and, therefore, the result of voting in a large committee appears to be
irrelevant to an individual.
Such a logic is incorrect. This paper studies comparative statics of the

size of the supermajority for a given size of the committee, and not of the size
of the committee. It just turns out that this former question has a very clean
answer if the committee is large. We cannot say that outcomes in bigger
committees are less important to an individual than in smaller committees.
As an example, suppose that true preference value is cnxi, where, as before,
xi comes from a known distribution, and where cn depends only on the size
of the committee n. That is, the stakes to an individual are related to the
size (or fineness) of the committee. In this case, the conclusion would be
that (

√
n/cn)V q

n converges to a constant, and hence the result of voting in
a large committee is explosively more important to an individual, as long as
cn grows faster than

√
n, as n→∞. The key fact is that regardless of what

cn is, the analysis of the effi cient supermajority in the limit is unaffected and
therefore in order to investigate the question asked in this paper one can just
assume that cn = 1.
Moreover, an alternative indicator can be used as an effi ciency criterion

—the probability of the correct choice, as defined in footnote 13. The impli-
cations are exactly the same, but this measure does not vanish as the size of
the committee goes to infinity.
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Figure 1: Welfare (uniform distribution)
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6.2 Is the asymptotic case a good approximation of
moderately sized committees?

Real-life committees have moderate sizes: hiring committees may have fewer
than 10 members, juries are often composed of 12 jurors, papal conclave has
up to 120 Cardinals, but historically this number has been much lower. Is the
asymptotic case a reasonable approximation of a committee with a moderate
number of voters?
This evaluation is done by means of a simulation. Figure 1 shows a case

in which individual preference parameters come from the uniform distribu-
tion. The horizontal axis shows the supermajority size, and the vertical axis
measures expected welfare scaled by

√
n. Three cases are shown: committee

consisting of 12 members, 24 members and the asymptotic case.
All three cases generate welfare levels that are remarkably similar. Note

that moderate-sized committees are inherently coarse, e.g. for n = 12, all
supermajority requirements q ∈ (6/12, 7/12] imply that 7 out of 12 members
must agree for an alternative to be selected. They all generate expected wel-
fare levels 0.415, represented by the first empty dot on Figure 1. What is more
important is that these three cases result in a similar welfare-maximizing su-
permajority, close to the asymptotic case 2/3. This example suggests that
the asymptotic case is a reasonable guide in trying to assess the welfare-
maximizing supermajority even if committees are relatively small.
This also suggest that even if the distribution is not perfectly but only

somewhat symmetric or the mean of the distribution is close but not exactly
zero, the asymptotic case may serve as a convenient first approximation.

6.3 What if preferences are correlated?

Next, consider an asymmetric distribution of preferences. This case can
emerge naturally when analyzing voting in jury trials, for instance. Apart
from some private component, jury trials have a strong common compo-
nent indicating that all voters agree about objective guilt or innocence of
the accused; in other words, individual preferences are somewhat positively
correlated. One can model this in the following way: after supermajority is
decided, the nature selects the value of a parameter µ, which can be equal
to either ν, or −ν with equal probabilities, and then selects and announces
a profile of types from a distribution F which is symmetric around µ. For
ν = 0, this model is equivalent to the one studied above; the further away
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Figure 2: Welfare for different ν (uniform distribution and n = 12).

from zero ν is, the stronger the agreement among the voters.
Clearly, for ν large enough (and F with bounded support) there is no

disagreement among the voters about which alternative is the best and hence
any supermajority level selects the effi cient outcome. In contrast to this
extreme case, Figure 2 illustrates the welfare for three levels of moderate ν
(this is based on n = 12 voters and F uniform around µ). The baseline
scenario is ν = 0 with effi cient supermajority 9/12. For ν = 0.15 the effi cient
supermajority is 10/12, and for ν = 0.3 it is 12/12. This example suggests
that, ceteris paribus, an effi cient supermajority may even be larger in a case
in which preferences are correlated than when they are independent around
µ = 0.

7 Final remarks

This paper studies conclaves —voting procedures in which one of the alter-
natives has to be approved by some supermajority, and hence voting may
be repeated many times before the decision is made. The main conclusion
of the analysis is this: if voters’preference intensities differ, then a conclave
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with some intermediate level of supermajority should increase effi ciency rel-
ative to simple majority. Simple majority gives all players the same vote,
regardless of whether they are indifferent or extreme. Supermajority, on the
other hand, gives ultimate power to voters who are not indifferent, and this
may improve effi ciency.
Technically, this is shown in two steps. Firstly, it is observed that the sam-

ple mean may correlate with some intermediate sample quasi-midranges bet-
ter than with the sample median. Secondly, it shows that the equilibrium in
repeated voting with supermajority depends on the "quasi-midrange" voter.
Combining these two observations, one can design a constrained effi cient su-
permajority rule, which maximizes the correlation between the equilibrium
outcome, characterized by the quasi-midrange, and the first-best effi cient out-
come, characterized by the mean. Under assumptions of Section 5, simple
majority is better than unanimity, but both are worse than some intermediate
supermajority.
Finally, delay does not play a role in effi ciency calculation in this model.

The fact that there is no delay in reaching the decision in equilibrium of
Proposition 1 is a consequence of a number of assumptions. Common knowl-
edge of payoffs is an important one. If it was assumed instead that xi was
known only to voter i (Ponsati and Sakovics (1996)), then delay would typ-
ically occur and would serve as a mechanism sorting indifferent voters from
the zealous ones. This delay implies an effi ciency loss, which, if high enough,
could eat up all the benefits that better voting decisions bring.
However, it is worth pointing out that even in such a model, where delay

does occur in equilibrium, it may be reasonable to ignore it in effi ciency cal-
culation. Often, the committee members represent a wider population and
so the quality of their decision may have an external effect on this popula-
tion (such as recruitment committee representing an organization, or jury
members working in the interests of the society, or in emergency negotia-
tion marathons where negotiators represent their political parties, countries
or organizations). By increasing the cost of waiting (locking the commit-
tee members indefinitely in a room only with low-quality coffee), one can
shorten the equilibrium waiting time of the wider population, although the
cost of delay paid by the committee members in symmetric equilibrium is not
changed (essentially by the Revenue Equivalence Theorem). In the extreme,
if the population is infinitely larger than the committee representing it, the
only factor in effi ciency calculation ought to be the quality of the decision,
and not the delay suffered by the committee members.
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A Appendix

A.1 Proof of Proposition 1.

We first characterize an equilibrium outcome; existence then follows.
Fix n, m and (x1, ..., xn) . Let h be the alternative supported by the pivotal

voter with a greater indifference time, and let l be the other alternative,
T h > T l. Let t̂∆ (t) be the first voting round after calendar time t, and let
ť∆ (t) be the last voting round before calendar time t, given the time grid
{0,∆, 2∆, ...} .

Lemma 4 There exists ∆̄ > 0 such that for all ∆ < ∆̄, the following is
true: if the game reaches a voting round t̂∆

(
T l
)
∈
(
T l, T h

)
, then in any

equilibrium the game stops at t̂∆
(
T l
)
and alternative h is selected.

Proof. Choose ∆̄ small enough, so that there are at least two distinct rounds
in interval

(
T l, T h

)
.

1. There is η > 0, such that in any round t ∈
(
T l, T h

)
alternative h is

selected with probability at least η.

Suppose the game reaches a round t ∈
(
T l, T h

)
. Voters are ordered

randomly before any round. Let η be a probability that they are or-
dered such that all voters in set N− take decision after all voters in set
N h

+, in which case alternative h is selected at round t. The proof of this
last statement is by backward induction within round t. In particular,
note that if all voters in N h

+ vote for h, then any voter in N− realizes
that l cannot be implemented in round t. If voters in N− vote for h as
well, they guarantee the best outcome for themselves, that the game
finishes in round t. Alternative h is implemented in round t regardless
of what voters in set N l

+ do.

2. For any ε > 0, there is ∆̄ > 0 such that for all ∆ < ∆̄ we have: in
round t = t̂∆

(
T l
)
, any player i ∈ N h

+ has the minimum equilibrium
payoff (1− ε)W (|xi| , t) + εL (|xi| , t).
Firstly, observe that the interval

(
T l, T h

)
shifts as∆ gets smaller. How-

ever, by assumption, its size is bounded away from zero, and hence the
number of rounds in it grows to infinity.
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In every round, players in setN h
+ have an independent chance of getting

a good payoff. To be more specific, consider two dates t and t −∆ in(
T l, T h

)
and let L̃ (|xi| , t) be a lower bound on payoff of a voter i ∈ N h

+

at the beginning of a voting round t (or at the end of round t − ∆).
At the beginning of round t − ∆, nature decides about the order of
voters in that round. With probability η the order is as in point 1,
implying payoffW (|xi| , t−∆) .With remaining probability, the order
is different, but the payoff to i is no less than L̃ (|xi| , t) . This is because
otherwise all voters inN h

+ have a common interest to vote for h in order
to either obtain h in this round, or send the game to the next round t
where payoffat least L̃ (|xi| , t) is obtained. So, a lower bound on payoff
at the beginning of period t−∆ is

L̃ (|xi| , t−∆) = ηW (|xi| , t−∆) + (1− η) L̃ (|xi| , t) (A.1)

Now, select ε > 0, as desired. Select a calendar time t′ ∈
(
T l, T h

)
close

enough to t = T l, so that

W (|xi| , t′) > (1− ε)W (|xi| , t) + εL (|xi| , t) (A.2)

Since W (|xi| , ·) is decreasing and continuous, such t′ exists. Let ζ =(
ť∆ (t′)− t̂∆ (t)

)
/∆ be the number of successive voting rounds between

rounds t̂∆ (t) and ť∆ (t′). The bound on lowest payoff in round ť∆ (t′) is
L (|xi| , t′) . Taking equation (A.1) and applying it recursively ζ times
back to round t̂∆ (t) we obtain

L̃
(
|xi| , t̂∆ (t)

)
≥
(

1− (1− η)ζ
)
W (|xi| , t′) + (1− η)ζ L (|xi| , t′)

(A.3)

Select ζ̄ large enough so that

(1− η)ζ̄ <
W (|xi| , t′)− ((1− ε)W (|xi| , t) + εL (|xi| , t))

W (|xi| , t′)− L (|xi| , t′)

Such a ζ̄ exists because the right-hand side is positive, by A.2. Hence
for all ζ > ζ̄,(

1− (1− η)ζ
)
W (|xi| , t′)+(1− η)ζ L (|xi| , t′) > (1− ε)W (|xi| , t)+εL (|xi| , t)

(A.4)
Equations (A.3) and (A.4) imply the result.
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3. There is ∆̄ > 0 such that for all ∆ < ∆̄ alternative h is chosen at round
t = t̂∆

(
T l
)
.

Observe that alternative l is not selected in this round, because voters
in N h

+ would vote against, by point 2, since for any i ∈ N h
+ we have

L (|xi| , t) < (1− ε)W (|xi| , t+ ∆)+εL (|xi| , t+ ∆) for ε small enough.
Players in N− prefer alternative h to be voted in round t rather than
later. Given the common interest of voters in set N h

+ ∪ N− and the
sequential nature of voting game, alternative h is selected in round t.

Lemma 5 There exists ∆̄ > 0 such that for all ∆ < ∆̄, the following is
true: if alternative h is selected in round t′ > 0, then it is selected in round
t = t′ −∆.

Proof. There are three outcomes that can occur in round t = t′ − ∆:
alternative h is selected in time t, alternative h is selected at time t′ and
alternative l is selected at time t. These outcomes generate payoff levels for
player i ∈ N h

+ equal to W (|xi| , t) , W (|xi| , t′) and L (|xi| , t) , respectively.
Note that if ∆ is small enough, these outcomes can be ranked asW (|xi| , t) >
W (|xi| , t′) > L (|xi| , t) .
All voters are put in a sequence at the beginning of round t. Let ι index

all voters who are in set N h
+, so that ι = 1 is the last such voter, and ι = Nh

+

is the first such voter.
Assume that an inductive hypothesis holds for ι: "if all voters i ∈ N h

+

who are before and up to ι in the sequence, i = Nh
+, ..., ι, voted for h, then

alternative l is not selected in round t". Note that if ι = 1, then the inductive
hypothesis is trivially satisfied, since if all voters inN h

+ voted for h, alternative
l does not have enough support to be selected in round t. The rest of this
proof will show that then the following is true "if all voters i ∈ N h

+ who are
before and up to ι + 1 in the sequence, i = Nh

+, ..., ι + 1, voted for h, then
alternative l is not selected in round t".
Consider voter ι and suppose that all voters i ∈ N h

+ who are before and
up to ι+ 1 in the sequence, i = Nh

+, ..., ι+ 1, voted for h.

1. Suppose that all votes registered so far in this round are such that h can
still be selected in this round t. Then in equilibrium h will be selected
in this round t.
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To see this, note that voter ι can vote for h and prevent l being selected
in round t, by inductive hypothesis. All successive voters have strictly
higher payoff from finishing the game with alternative h at t, rather
than at t′. They vote so that h is selected at t. Consequently, this
action of ι leads to the highest possible payoffW (|xι| , t) .

2. Suppose that all votes registered so far in this round are such that h
cannot be selected at t. Then h will be selected at time t′.

To see this, note that voter ι can vote h and prevent l from being
selected at time t, by inductive hypothesis. Payoff from this action is
the highest possible W (|xι| , t′) (since W (|xι| , t) cannot be achieved).

In any case, before ι takes her action, alternative l will not occur in
equilibrium at round t, proving the inductive step.
Consider now all voters who take actions before voter ι = Nh

+; Since
alternative l will not be selected, they vote so that alternative h is selected
at t.
The proof of the statement in Proposition 1 that the equilibrium outcome

is unique is by backwards induction, voting round by voting round: the first
lemma provides a starting point, and the second lemma provides a recursive
step backwards.
Equilibrium existence is a by-product of this proof. For example, all

agents voting for h in every round and for every history is an equilibrium.

A.2 Proof of Lemma 1

Recall the following two known results:

• The joint asymptotic distribution of the sample mean and sample quan-
tile (Ferguson (1999)):

√
n

([
X̄n

Y p
n

]
−
[
µ
xp

])
d→ N

([
0
0

]
,

[
σ2 σpx
σpx (σp)

2

])
• The joint asymptotic distribution of two sample quantiles (for example:
David (1981) Theorem 9.2):

√
n

([
Y p
n

Y q
n

]
−
[
xp
xq

])
d→ N

([
0
0

]
,

[
(σp)

2 σpq
σpq (σq)

2

])
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A joint asymptotic distribution of
[
X̄n, Y

p
n , Y

q
n

]T
is normal too. To see

this, follow the steps of Ferguson (1999) in deriving the asymptotic distri-
bution of the sample mean and two sample quantiles and then apply the
Cramér-Wold Theorem to show the asymptotic joint normality.
An immediate implication of the above observation is that

√
n

 X̄n

Y p
n

Y q
n

−
 µ
xp
xq

 d→ N (03×1,Σ)

where the covariance matrix is

Σ =

 σ2 σpx σqx
σpx (σp)

2 σpq
σqx σpq (σq)

2


Next, apply the affi ne transformation to the random variables in the above

convergence, with the transformation matrix

D =

[
1 0 0
0 1/2 1/2

]
We then obtain

√
n

([
X̄n

Ẑpq
n

]
−
[

µ
µpq

])
d→ N

(
02×1, DΣDT

)
where the covariance matrix is

DΣDT =

[
σ2 1

2
(σpx + σqx)

1
2

(σpx + σqx)
1
4

(
σ2
p + 2σpq + σ2

q

) ]
A.3 Proof of Lemma 2

Let
ω̄ (x) = E (X|X < x)

ω (x) = E (X|X > x) (A.5)

The asymptotic covariance between the sample mean and the sample (p, q)—
quasi-midrange is

σxz =
1

2

(
p (1− p)
f (xp)

(ω (xp)− ω̄ (xp)) +
q (1− q)
f (xq)

(ω (xq)− ω̄ (xq))

)
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Facts about conditional expectation are

qω (x1−q) + (1− q) ω̄ (x1−q) = µ = (1− p)ω (xp) + pω̄ (xp)

Using these equations to eliminate ω (xp) and ω̄ (xq) results in

σxz =
1

2

(
p

f (xp)
(µ− ω̄ (xp)) +

(1− q)
f (xq)

(ω (xq)− µ)

)
Now, recall that p = 1− q ≤ 1/2. This simplifies the covariance to

σxz =
1

2
(1− q)

(
1

f (x1−q)
(µ− ω̄ (x1−q)) +

1

f (xq)
(ω (xq)− µ)

)
Evoke assumption 1, about the symmetry of the distribution around the
mean. For every q we have f (x1−q) = f (xq) ; moreover, we have µ =
(ω (xq) + ω̄ (x1−q)) /2. Eliminate ω̄ (x1−q) to obtain

σxz =
1− q
f (xq)

(ω (xq)− µ) (A.6)

Likewise, the asymptotic variance of the quasi-midrange simplifies to

(σz)
2 =

1

4

(
σ2
p + 2σpq + σ2

q

)
=

1

2

1− q
f (xq)

2 (A.7)

The first part of the proposition comes from the definition of the correlation
coeffi cient in equation (2) and equations (A.6) and (A.7).
To obtain the second part take the derivative of ρ (x)

ρ′ (x) =

√
2

σ

−f (x)

2
√

1− F (x)
(ω (x)− µ) +

√
1− F (x)ω′ (x)

Note that

ω′ (x) =
d

dx

(∫ ∞
x

tf (t) dt
1

1− F (x)

)
= −xf (x)

1

1− F (x)
+

∫ ∞
x

tf (t) dt
f (x)

(1− F (x))2

=
f (x)

1− F (x)
(ω (x)− x)

That is

ρ′ (x) =
1

σ
√

2

f (x)√
1− F (x)

(µ+R (x)− x)
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A.4 Proof of Lemma 3

Firstly, find E
(
X̄n|Ẑpq

n > 0
)
. By Greene (2002), Theorem 22.5 we have

√
nE
(
X̄n|Ẑpq

n > 0
)

= E
(√

nX̄n|
√
nẐpq

n > 0
)

→ ρσ
φ (0)

1− Φ (0)

where φ and Φ are the p.d.f. and c.d.f. of a standard normal distribution.
Likewise

√
nE
(
X̄n|Zpq

n < 0
)
→ −ρσ φ (0)

Φ (0)

Then, the average expected effi ciency of a supermajority with q is

√
nV m

n → 2ρσφ (0) = ρσ
√

2
1√
π

As far as the result in footnote 7 is concerned, note that X̄n > 0 holds if
and only if its standardized version satisfies

W 1
n =
√
nX̄n/σ > 0

Likewise, Zq
n > 0 if and only if

W 2
n =
√
nZq

n/σz > 0

Therefore,

Pr
{
X̄n > 0 ∧ Zq

n > 0
}

= Pr
{
W 1
n > 0 ∧W 2

n > 0
}

→ Pr
{
W 1
∞ > 0 ∧W 2

∞ > 0
}

=
1

4
+

1

2π
arcsin (ρ)

where the last line follows from the Sheppard’s Theorem. The probability
that these random variables are both negative is the same.

A.5 Proof of Proposition 6

Consider the two intervals separately. Firstly, suppose that x ∈ [β, 1] . We
have R (x) = x if and only if x = 1/3. Notice that β < 1/3, so this x is in the
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interval and indeed it is a locally optimal cutoff level. Knowing the values
of parameters α and β we can verify that q = F (1/3) is indeed a locally
effi cient supermajority.
To be globally optimal, one has to make sure that no x ∈ [0, β] is better

than x = 1/3. Note that

ω (x) ≥ ω (0) =
1

2
(α + β) = 2

1− q
2− q = 2β ≥ 2x

where the first inequality follows from the fact that ω (defined in equation
A.5) is an increasing function in this interval. The conclusion, ω (x) ≥ 2x,
implies that ρ (x) is non-decreasing on [0, β] and hence no point there is
better than x = β, which itself is strictly worse than x = 1/3.

A.6 Proof of Proposition 7

Step 1. Consider another nonnegative random variable Q, that has a c.d.f.
FQ (·) and the mean residual life function RQ (·) . If Q is smaller than X in
mean residual life order, RQ (x) ≤ R (x) for all x ≥ 0, then the variance of
Q is finite. To see this note that:
Inequality RQ (x) ≤ R (x) holds if and only if for every x ≥ 0∫∞

x
(1− F (u)) du∫∞

x
(1− FQ (u)) du

is a non-decreasing function of x over the set
{
x :
∫∞
x

(1− FQ (u)) du > 0
}
.

Since ∫∞
x

(1− F (u)) du∫∞
x

(1− FQ (u)) du
≥
∫∞

0
(1− F (u)) du∫∞

0
(1− FQ (u)) du

=
E (X)

E (Q)
= ζ > 0

it follows that for every x ≥ 0∫ ∞
x

(1− F (u)) du ≥ ζ

∫ ∞
x

(1− FQ (u)) du

Take an integral of both sides over all x over the interval (0,∞) to obtain∫ ∞
0

∫ ∞
x

(1− F (u)) dudx ≥ ζ

∫ ∞
0

∫ ∞
x

(1− FQ (u)) dudx
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The change of the order of integration implies∫ ∞
0

(∫ u

0

dx

)
(1− F (u)) du ≥ ζ

∫ ∞
0

(∫ u

0

dx

)
(1− FQ (u)) du

or equivalently∫ ∞
0

u (1− F (u)) du ≥ ζ

∫ ∞
0

u (1− FQ (u)) du

Note the integration by parts∫ ∞
0

u2f (u) du = − lim
u→∞

u2 (1− F (u)) + 2

∫ ∞
0

u (1− F (u)) du

so that our inequality becomes

E
(
X2
)

+ lim
u→∞

u2 (1− F (u)) ≥ ζ lim
u→∞

u2 (1− FQ (u)) + ζ

∫ ∞
0

u2fQ (u) du

The left-hand side is finite because the second moment is finite E (X2) <∞
and Kolmogorov inequality u2 (1− F (u)) ≤ E (X2) . We get that the right-
hand side must be finite, so must E (Q2) .
Step 2. Now, for any ν > 0 take a random variable Q with a mean

residual life function

RQ (x) =

{
λ if x ≤ λ
x if x > λ

The corresponding c.d.f. and p.d.f. are

FQ (x) =

{
1− exp (−x/λ) if x ≤ λ

1− λ2 exp (−1) /x2 if x > λ

fQ (x) =

{
(1/λ) exp (−x/λ) if x ≤ λ
2λ2 exp (−1) /x3 if x > λ

Note that

∫ ∞
0

u2fQ (u) du =

∫ λ

0

u2fQ (u) du+

∫ ∞
λ

u2fQ (u) du

= (1/λ)

∫ λ

0

u2 exp (−u/λ) du+ 2λ2 exp (−1)

∫ ∞
λ

(1/u) du

= (1/λ)

∫ λ

0

u2 exp (−u/λ) du+ 2λ2 exp (−1)
(

lim
u→∞

ln (u)− ln (λ)
)

= ∞
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Step 3. Now suppose that R (x) > x for all x. Select λ = minxR (x) and
note that λ is strictly positive. Note also that R (x) ≥ RQ (x), where RQ (x)
is associated with the random variable Q defined in step 2. By step 2 it has
an infinite variance. By step 1 variance of Q must be finite. We obtain a
contradiction. Therefore R (x) ≤ x for some x ≥ 0. Since R is a continuous
function, R (x) = x for some x ≥ 0.
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